
A Facile Total Synthesis of Isoquinolone Alkaloids

Albert W. M. Lee,* Wing Hong Chan * and Eddy T. T. Chan Department of Chemistry, Hong Kong Baptist College, 224, Waterloo Road, Kowloon, Hong Kong

Four isoquinolone alkaloids, *N*-methylcorydaldine **8a**, oxyhydrastinine **8b**, 6,7-dimethoxy-2methylisocarbostyril **9a** and doryanine **9b**, have been efficiently synthesized from phenyl vinyl sulfoxide *via* the Pummerer type rearrangement as a key step.

Sulfoxide functionality has been used extensively in many areas of organic synthesis;¹ for example, the ability of sulfoxide in activating a conjugated olefin or acetylene as a Michael acceptor² and dienophile³ had been demonstrated. To follow our interest in using unsaturated sulfoxides in organic synthesis,^{2d,3c} we now report the use of vinyl sulfoxide as a 1,2-dielectrophilic two-carbon synthon in a highly efficient synthesis of isoquinolone alkaloids.⁴

Isoquinolone alkaloids are a group of naturally occurring alkaloids mainly isolated from *Hernandiaceae* and *Ranunculaceae*. They can be subdivided into two categories: those with a total aromatic nucleus such as 6,7-dimethoxy-2-methylisocarbostyril **9a**,⁵ doryanine **9b**,⁶ and those which incorporate a C-3, 4-single bond included *N*-methylcorydaldine **8a**⁷ and oxyhydrastine **8b**. Our synthesis started from *N*-methyl-2-(phenylsulfinyl)ethylamine **2** which was prepared by Michael addition of methylamine to phenyl vinyl sulfoxide **1** (Scheme 1). Amine **2**

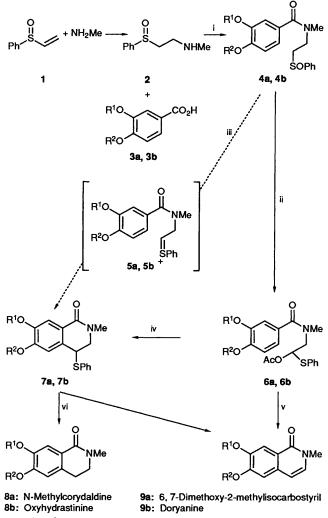
Scheme 1 Reagents and conditions: i, DCC, dichloromethane or methanol; ii, acetic anhydride, reflux; iii, TFA, acetic anhydride, toluene, reflux; iv, TCA, benzene, reflux; v, p-TSA, toluene, reflux, vi, Raney nickel, ethanol

was then coupled with substituted benzoic acids 3a and 3b using dicyclohexylcarbodiimide (DCC)⁸ to afford the corresponding amides 4a and 4b respectively in good yield. The next step required the activation of the sulfoxide group by Pummerer rearrangement.⁹ The aromatic moiety of 4 was available for internal trapping of the presumed sulfenium ion 5 of the Pummerer reaction to furnish the cyclized product. However, direct ring closure of 4 to 7 via Pummerer rearrangement resulted in only limited amounts of the expected product (Table 1 entry 1). Therefore a two-step approach was adopted. Firstly, Pummerer rearrangement of 4 in refluxing acetic anhydride yielded acetoxy sulfide 6 in almost quantitative yield. Subsequently, various acidic conditions were explored to effect the ring closure reaction. As shown in Table 1, treatment of 6 with toluene-p-sulfonic acid (TSA) in refluxing toluene (entries 3 and 5) not only effected the cyclization, but the cyclized product 7 was further eliminated to yield the completely aromatic series (*i.e.* **9a** and **9b**) of the isoquinolone alkaloids. This represented a facile convergent route for the total synthesis of 6,7-dimethoxy-2-methylisocarbostyril **9a** and doryanine **9b** in a three step reaction sequence starting from **2** in overall isolated yields of 70 and 47% respectively. The spectroscopic data of the products were identical with those reported in the literature.^{5,6}

In contrast, the synthesis of C-3, 4-single bond isoquinolones 8a and 8b required a more elaborate route. Various attempts to prepare 7 exclusively without contamination of the further eliminated products 9 were not successful. The best conditions for the preparation of 7 from 6 were accomplished in refluxing benzene with trichloroacetic acid (TCA) as catalyst (entries 2 and 4). Apparently, with weaker acid catalyst and lower reaction temperature, the sulfides 7 emerged as the major products.[†] Desulfurisation of 7 with Raney nickel gave the desired major product 8. However, the completely aromatic products 9 were also afforded. The crude reduction products could be easily separated on flash column chromatography (silica gel) yielding N-methylcorydaldine 8a⁷ and oxyhydrastinine 8b¹⁰ in 49 and 54% yields respectively.

In conclusion, the heterocyclic ring system of the isoquinolones was efficiently constructed by sequential bond formation (*i.e.* bonds 1 to 3) as illustrated in Scheme 2. From a retrosynthetic consideration, vinyl sulfoxide acted as a vinyl 1,2-dielectrophilic two-carbon synthon 10 for the synthesis of the totally aromatic isoquinolones. For the C-3, 4-single bond series, vinyl sulfoxide could be seen as an alkyl 1,2-dielectrophilic two-carbon synthon 11. The use of unsaturated sulfoxide as a dielectrophilic two-carbon synthon in the synthesis of other heterocycles is now being actively pursued.

Experimental


Formation of 6 by the Pummerer Rearrangement.—A mixture of sulfoxide 4a (233 mg, 0.67 mmol) and acetic anhydride (8 cm³) was refluxed under a nitrogen atmosphere for 6.5 h. After cooling, the acetic anhydride was removed under reduced pressure. Chromatography of the organic residue on a flash column (silica gel: 50% ethyl acetate in light petroleum) afforded the Pummerer product 6a as a colourless liquid (220 mg, 84%); $v_{max}(neat)/cm^{-1}$ 1632 and 1744; $\delta_{H}(60 \text{ MHz}; \text{CDCl}_{3})$ 2.07 (3 H, s), 3.03 (3 H, s), 3.70 (2 H, m), 3.87–3.90 (total 6 H, br s), 6.33 (1 H, t, J 7.0), 6.87 (3 H, m) and 7.27 (5 H, m); m/z 389.1293 (Calc. for C₂₀H₂₃NO₅S: M, 389.1297).

Typical Procedure for the Cyclization 6 to 9.—A mixture of

[†] Selected spectral data. For **7a** $v_{max}(neat)/cm^{-1}$ 1644; $\delta_{H}(60 \text{ MHz}; CDCl_3)$ 3.08 (3 H, s), 3.73–4.01 (total 2 H, m), 3.73–3.87 (total 6 H, br s), 4.30 (1 H, t, J 3.5), 6.45 (1 H, s), 7.22 (5 H, m) and 7.47 (1 H, s); *m/z* 329.1078 (Calc. for $C_{18}H_{19}NO_3S$: *M*, 329.1086).

Table 1 Attempted ring closure in the synthesis of isoquinolones

Compound	Entry	Reactant (conc.)	Solvent	Conditions	Duration (t/min)	Product(s) [Yield (%)]
4a	1	TFA, AC ₂ O (0.01, 0.1 ml/ml)	toluene	reflux	25	7a (10%)
ба	2	TCA (0.243 g/ml)	benzene	reflux	42	7a/9a (48/14%)
	3	TSA (0.320 g/ml)	toluene	reflux	40	9a (93%)
6b	4	TCA (0.180 g/ml)	benzene	reflux	51	7b/9b (41/24%)
	5	TSA (0.192 g/ml)	toluene	reflux	28	9b (75%)

a: $R^1 = R^2 = Me$

b: R^1 , $R^2 = --CH_2$

Scheme 2

the Pummerer product 6a (144 mg, 0.37 mmol) and toluene-psulfonic acid monohydrate (1.28 g, 6.74 mmol) in toluene (4 cm³) was refluxed for 40 min. After cooling to room temperature, the reaction mixture was basified with saturated aqueous sodium carbonate. The resulting solution was extracted with dichloromethane $(3 \times 30 \text{ cm}^3)$ and the combined organic extracts were dried, filtered and evaporated under reduced pressure. Chromatography of the organic residue on a flash column (silica gel; 60% ethyl acetate in light petroleum) gave 6,7-dimethoxy-2-methylisocarbostyril 9a as a colourless solid (75.4 mg, 93%). The melting point and spectroscopic properties agreed with those reported in the literature.5

Acknowledgements

Financial support from the UPGC (RSC-89/90-13) grant is gratefully acknowledged. We also thank the Chemistry Department of the Chinese University of Hong Kong and the University of Hong Kong for providing some of the spectroscopic services.

References

- 1 For a review see: The Chemistry of Sulphones and Sulphoxides, eds., S. Patai, Z. Rappaport and C. Stirling, John Wiley & Sons, New York, 1988
- 2 (a) R. Tanikaga, H. Sugihara, K. Tanaka and A. Kaji, Synthesis, 1977, 299; (b) G. I. Tsuchiashi, S. Mitamura, S. Inoue and K. Ogura, Tetrahedron Lett., 1973, 323; (c) S. G. Pyne, R. Griffith and M. Edwards, Tetrahedron Lett., 1988, 29, 2089; (d) A. W. M. Lee, W. H. Chan and Y. K. Lee, Tetrahedron Lett., in the press.
- 3 For vinyl sulfoxide: (a) C. W. Doecke, G. Klein and L. A. Paqquette, J. Am. Chem. Soc., 1977, 100, 1597; (b) R. V. Williams and X. Lin, J. Chem. Soc., Chem. Commun., 1989, 1872; For acetylenic sulfoxide: (c) A. W. M. Lee, W. H. Chan and M. S. Wong, J. Chem. Soc., Chem. Commun., 1988, 1585; (d) C. Maignan and F. Belkasmioui, Tetrahedron Lett., 1988, 29, 2823.
- 4 For a review: M. Shamma, in The Isoquinoline Alkaloids, Chemistry and Pharmacology, A. T. Blomquist and H. Wasserman, ed., Academic Press, New York, 1972, p. 90.
- 5 N. M. Mollov and H. B. Dutschewska, Tetrahedron Lett., 1969, 1951.
- 6 V. H. Belgaonkar and R. N. Usgaonkar, J. Chem. Soc., Perkin Trans.
 - 1, 1977, 702.
- 7 M. Shamma and Sr. M. A. Podczazy, Tetrahedron, 1971, 27, 727.
- 8 J. C. Sheehan and G. P. Hess, J. Am. Chem. Soc., 1955, 77, 1067.
- 9 (a) P. Pummerer, Chem. Ber., 1909, 42, 2282; (b) S. Iriuchijma, K. Maniwa and G. Tsuchihashi, J. Am. Chem. Soc., 1975, 97, 596; (c) N. Ono, H. Miyaka, R. Tanikaga and A. Kaji, J. Org. Chem., 1982, 47, 5017.
- 10 Dictionary of Alkaloids, eds. I. N. Southon and J. Buckingham, Chapman and Hall, London, 1989, p. 347.

Paper 1/05627A Received 5th November 1991 Accepted 13th November 1991